Do you need experts in the crowd?: a case study in image annotation for marine biology
نویسندگان
چکیده
Labeled data is a prerequisite for successfully applying machine learning techniques to a wide range of problems. Recently, crowdsourcing has shown to provide effective solutions to many labeling tasks. However, tasks in specialist domains are difficult to map to Human Intelligence Tasks (or HITs) that can be solved adequately by "the crowd". The question addressed in this paper is whether these specialist tasks can be cast in such a way, that accurate results can still be obtained through crowd-sourcing. We study a case where the goal is to identify fish species in images extracted from videos taken by underwater cameras, a task that typically requires profound domain knowledge in marine biology and hence would be difficult, if not impossible, for the crowd. We show that by carefully converting the recognition task to a visual similarity comparison task, the crowd achieves agreement with the experts comparable to the agreement achieved among experts. Further, non-expert users can learn and improve their performance during the labeling process, e.g., from the system feedback.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملدرآمدی بر مبنای مکان یابی و طراحی بیمارستان ها
Background: The hospital is an important element in the new public health. The health in the populations requires access to the medical and hospital services as well as preventive care and a healthy environment. This study attempts to review the important factors to be considered in the hospital sites selected and design in the urban, regional and country levels. Finally, suggestions have exhib...
متن کاملCan Masses of Non-Experts Train Highly Accurate Image Classifiers? - A Crowdsourcing Approach to Instrument Segmentation in Laparoscopic Images
Machine learning algorithms are gaining increasing interest in the context of computer-assisted interventions. One of the bottlenecks so far, however, has been the availability of training data, typically generated by medical experts with very limited resources. Crowdsourcing is a new trend that is based on outsourcing cognitive tasks to many anonymous untrained individuals from an online commu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013